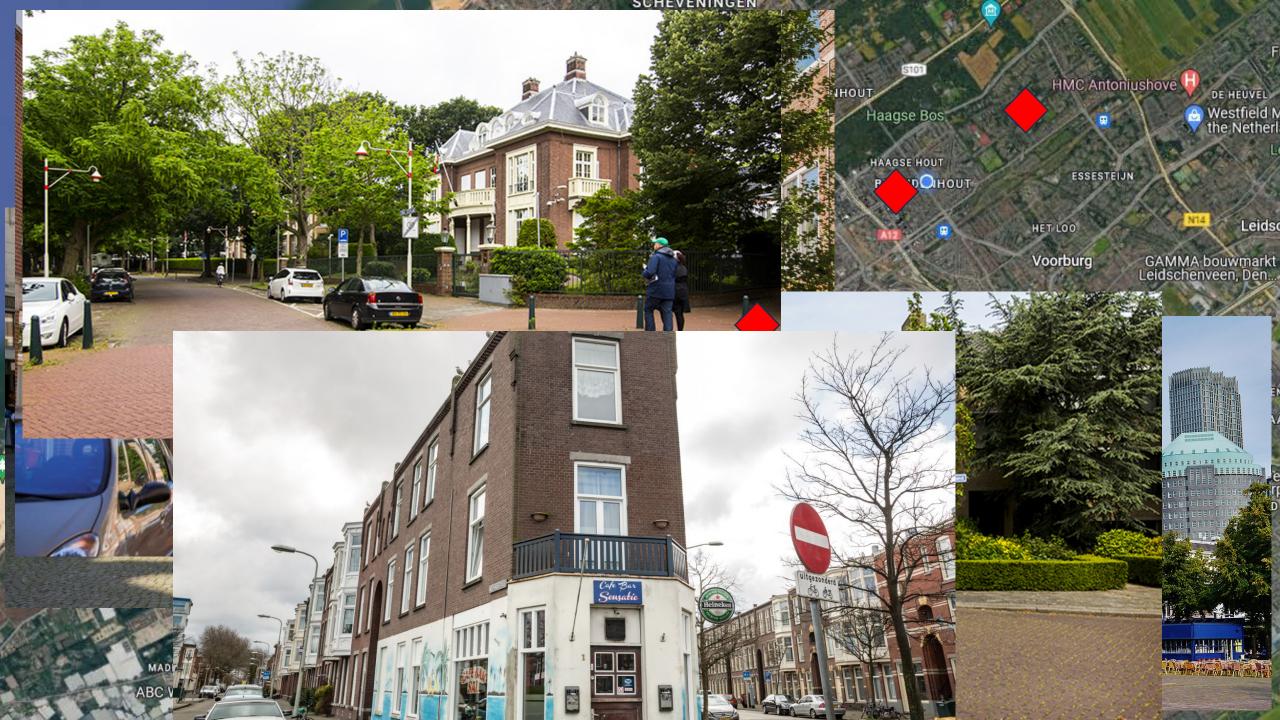
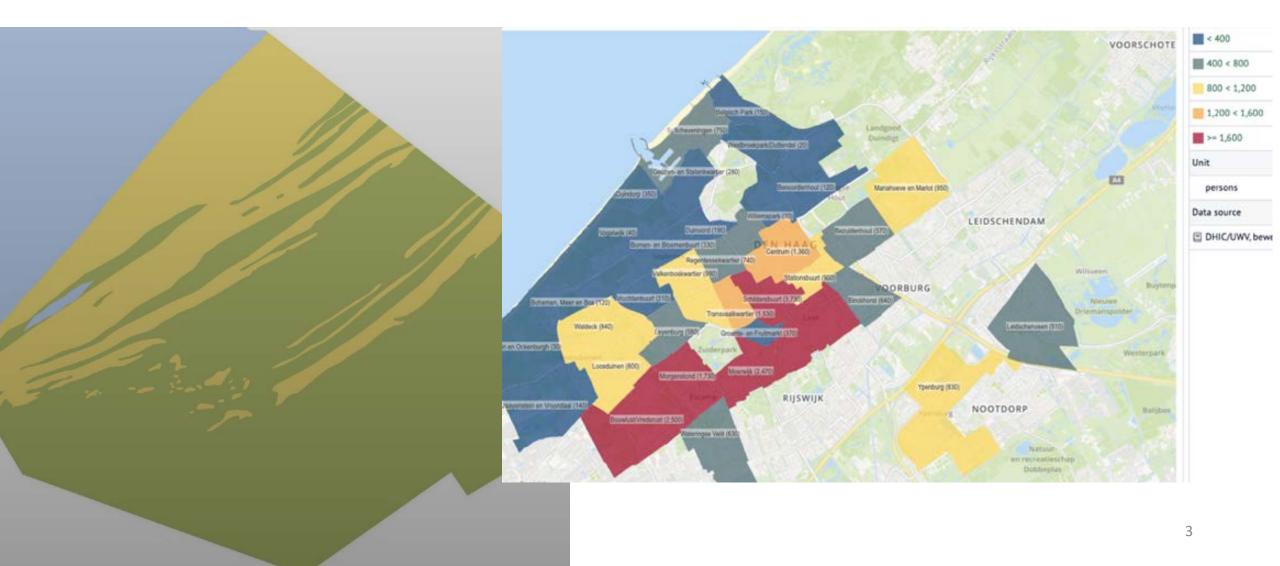
BetterLife Spring School, April 9-10, 2024

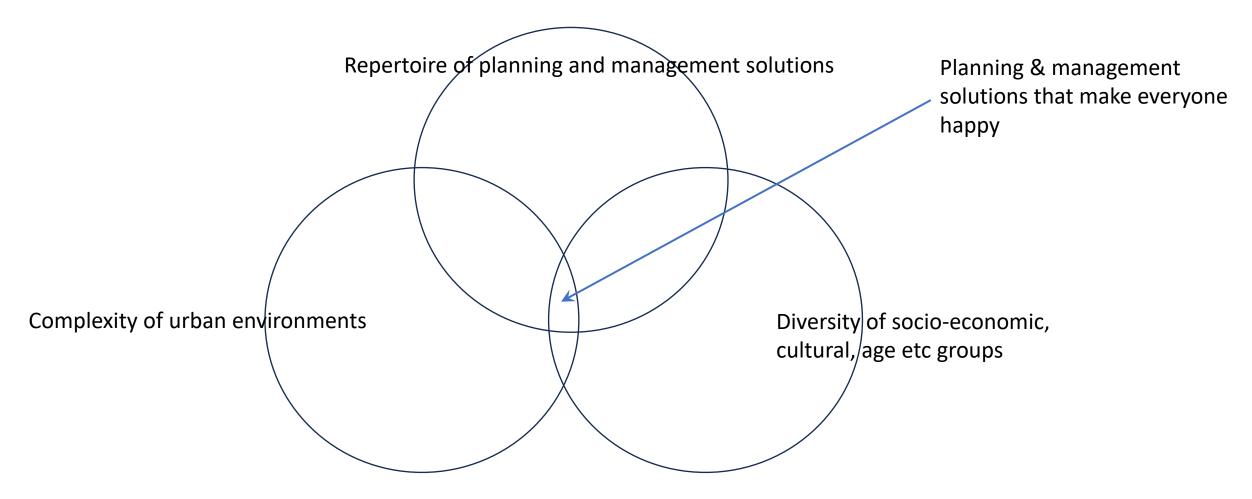
Urban Ecosystem Disservices


for engaging communities to the discussion over the management of urban nature

Anton Shkaruba, Estonian University of Life Sciences, Tartu, Estonia anton.shkaruba@emu.ee



Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Research Executive Agency (REA). Neither the European Union nor the granting authority can be held responsible for them.

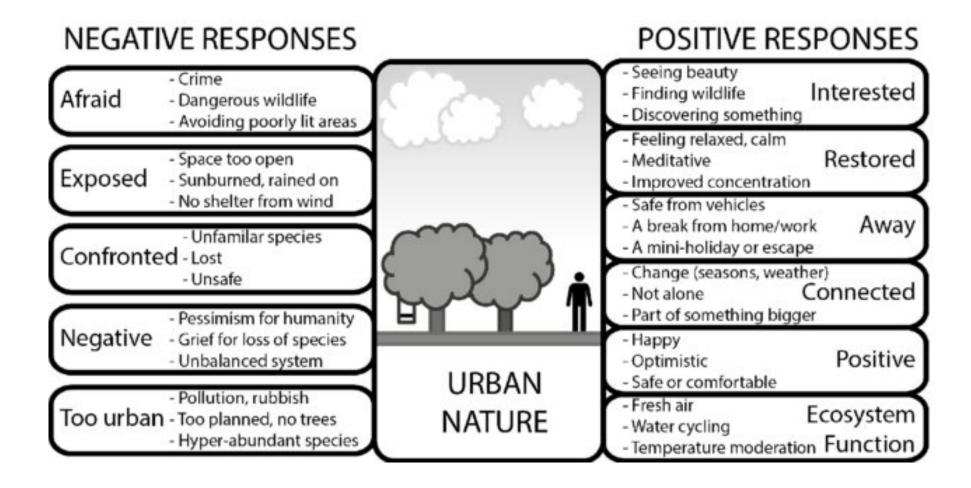

Funded by the European Unio

The Hagenees versus the Hagenaar

Complexity of urban governance

Cinghiali alla riscossa, branco notato in Zona Centova a Perugia limitationaria VIDEO E er il parco».

-> PRIMO PIANO ATTUALITÀ


-> primo piano 🦻 Chi ha la precedenza in una rotonda

Chi ha la precedenza in una rotonda? A Perugia i cinghiali

Il video di una passante

Focus: urban nature (2)

Taylor, Leckey & Hochuli, 2020; DOI: 10.1007/s11252-019-00910-5

 ... functions and properties of ecosystems delivering discomfort to citizens (Döhren & Haase 2015; Lyytimäki 2014)

EDS have been used to evaluate

- the value of green space for urban residents (Lyytimäki and Sipilä, 2009; Lyytimäki et al., 2008)

- green spaces can provide many ES but also a range of EDS, from allergenic substances and volatile compounds emitted by vegetation (Dobbs et al., 2014), to blocking of sunlight by trees (Roy et al., 2012), and the presence of wild animals in people's backyards (Lyytimäki, 2014).

An integrated assessment of ES and EDS will help towards a more

- holistic understanding of the role of nature regarding human well-being,

- effective and innovative sustainability policies (Lyytimäki, 2014; Schaubroeck, 2017).

Blanco et al. (2019) claimed that ES as well as EDS should be integrated in planning designs:

(1) EDS encompass the diversity of the adverse impact of ecosystems,
(2) EDS and regulating ES are driven by distinct processes,
(3) EDS allow better integration of a multiplicity of values,
(4) EDS are different from ES trade-offs,
(5) EDS emphasize that adverse impact is co-produced by humans and ecosystems

Ecosystem disservices ... Challenge for integrating assessment EDS many trade-offs, such as choices between e.g.,
 space and commercial development benefits vs. ES

- conflicting perspectives and preferences of various stakeholder

We assume that there are at least two compelling reasons for EDS to be addressed by the planning process in its broad sense

(1) for urban nature in order to survive, and

(2) for citizens in order to benefit from the services it provides.

Focus on

- The formulation of multistakeholder consensus over EDS/ES in terms of inclusive planning

Examples of disservices: ecosystem attributes and functions

Unacceptable ecosystem - bog

Invasive species - hogweed

Flood

Falling old trees and branches

Seeds and pollen causing stain and dirt

Algae bloom

Examples of disservices: human health and aesthetic issues

Allergies

Tick bites

Attacks by wild animals in reality + fear of such probability

Fear of wild animals

Unmanaged green areas

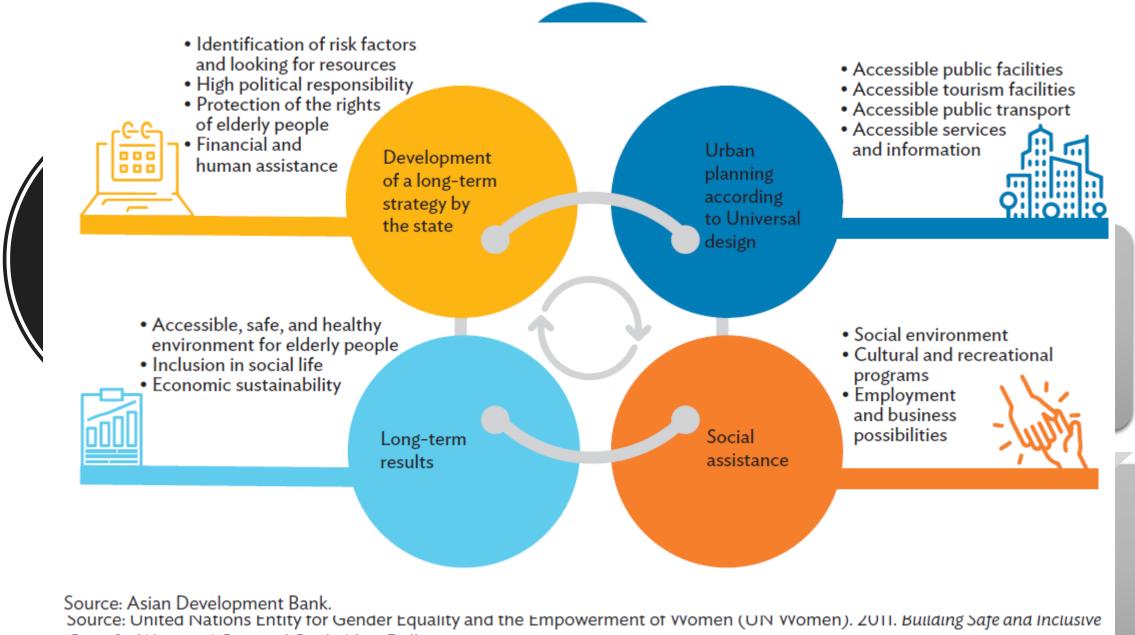
Unpleasant smell

Examples of disservices: restrictions and inhibition of urban planning and development

Protected species and areas inhibit planning and construction

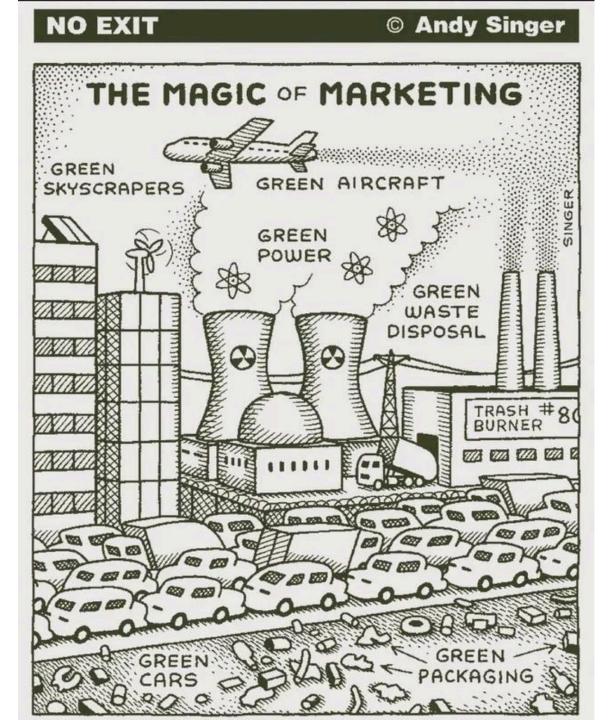
Crimes connected with urban parks

Poor condition of unpaved pads


Shade from vegetation

Protected areas block of transport connectivity

Visual obstacles from vegetation 11



Cities for Woman: A Practical Guide. New Delhi.

	EDS group	EDS sub-group	EDS examples					
	I. Ecosystem attributes and	la. Ecosystem attributes	"Unacceptable" ecosystems (for example wetlands), invasive species					
	functions	Ib. Events generated by urban ecosystems	Floods, landslides, erosion, forest, grassland or pit bog fires					
		Ic. Functioning of urban ecosystems	Harm from bird excrement on artificial surface, risks of falling of trees and branches, harm from roots from pavements and constructions, leaf litter, seeds and pollen causing stain and dir fire-prone vegetation, algae bloom (including filamentous algae methane emissions by plants					
assification of ecosystem	II. Human health	IIa. Risks related to human health	Allergies and diseases, hygiene and health problems associated with animal excrements, toxic species in urban ecosystems, biting animals and attacks by wild animals					
disservices		IIb. Nature related fears	Fear of wild animals, fear of darkness, fear of wild nature in general					
	III. Aesthetic issues	N/A	Loud voices of birds, dogs, and etc., excrement in green areas, species looking ugly, unmanaged bushes, trees and green areas, presence of weeds, pests or nuisance species such as gulls, mosquitoes, mugwort or nettle, unpleasant smell					
	IV. Restrictions and inhibition of urban	IVa. Restrictions caused by nature protection	Protected species and areas inhibit planning and construction					
	planning and development	IVb. Inhibition of activities	Crimes connected with urban parks, poor condition of unpaved pads, shade and visual obstacles from vegetation, block of transport connectivity					

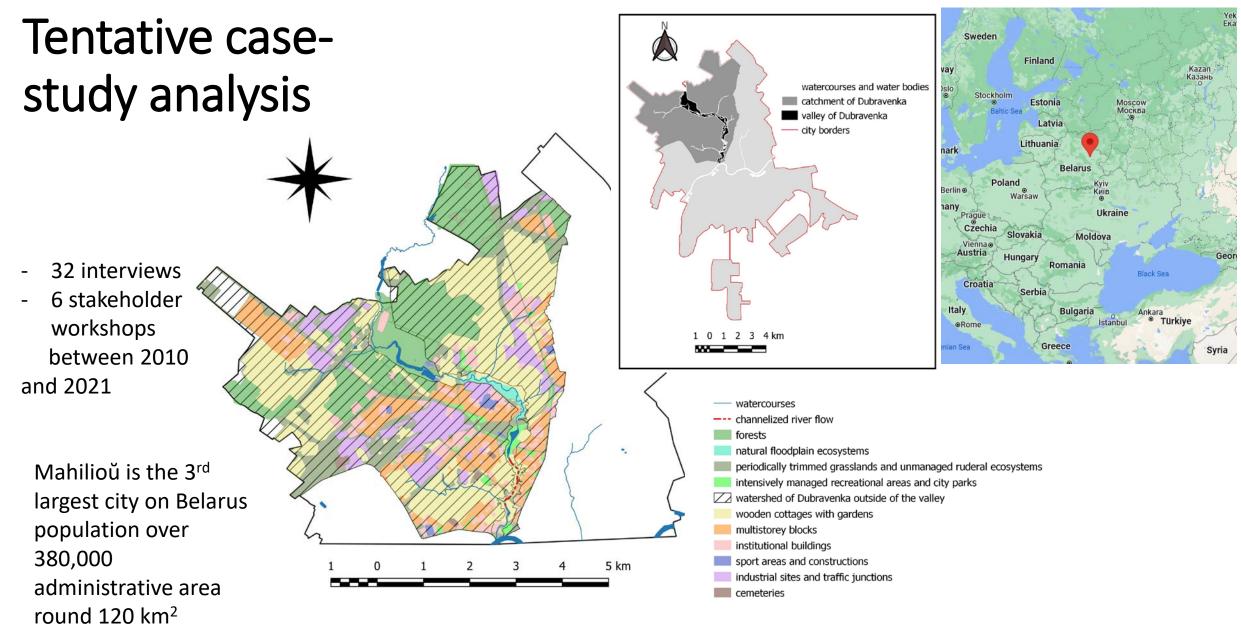
EDS – how to?

- Management action (e.g. adding or maintaining infrastructure)
- Communication strategy
- Awareness rising
- Avoid greenwashing!!!

The decisionmaking tree for the identification and management of EDS in cities

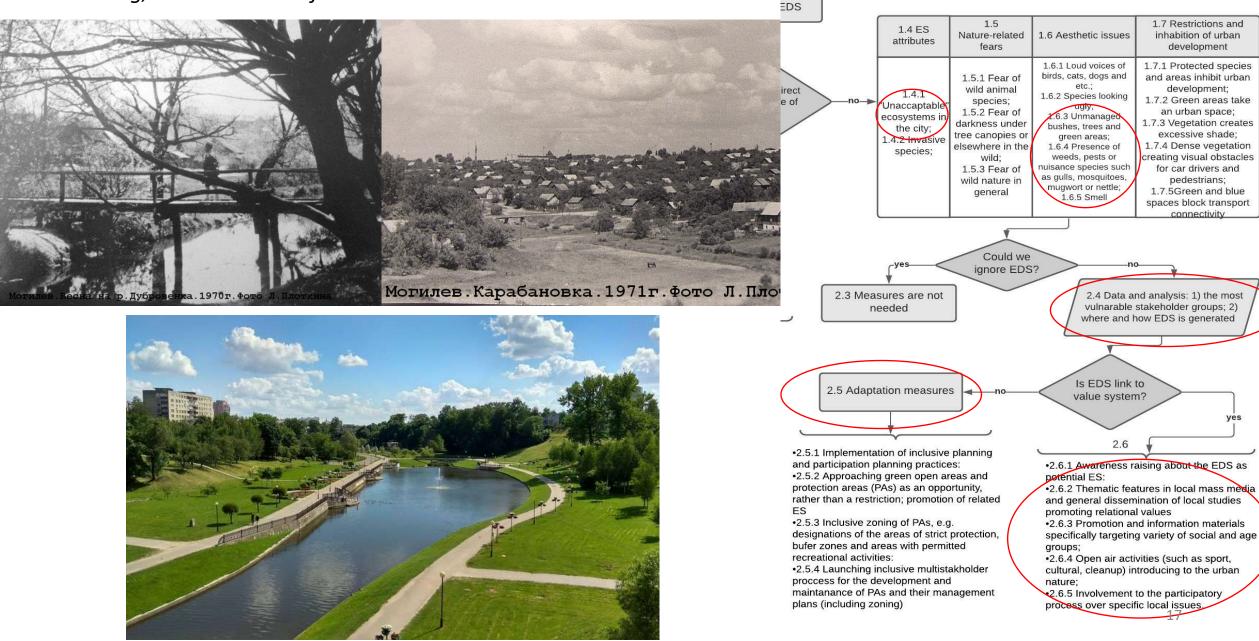
green areas: •2.7.4 Control of the spreading of animal population. promotion material how to behavor in the green areas

and protect yourself from bites


vegetation;

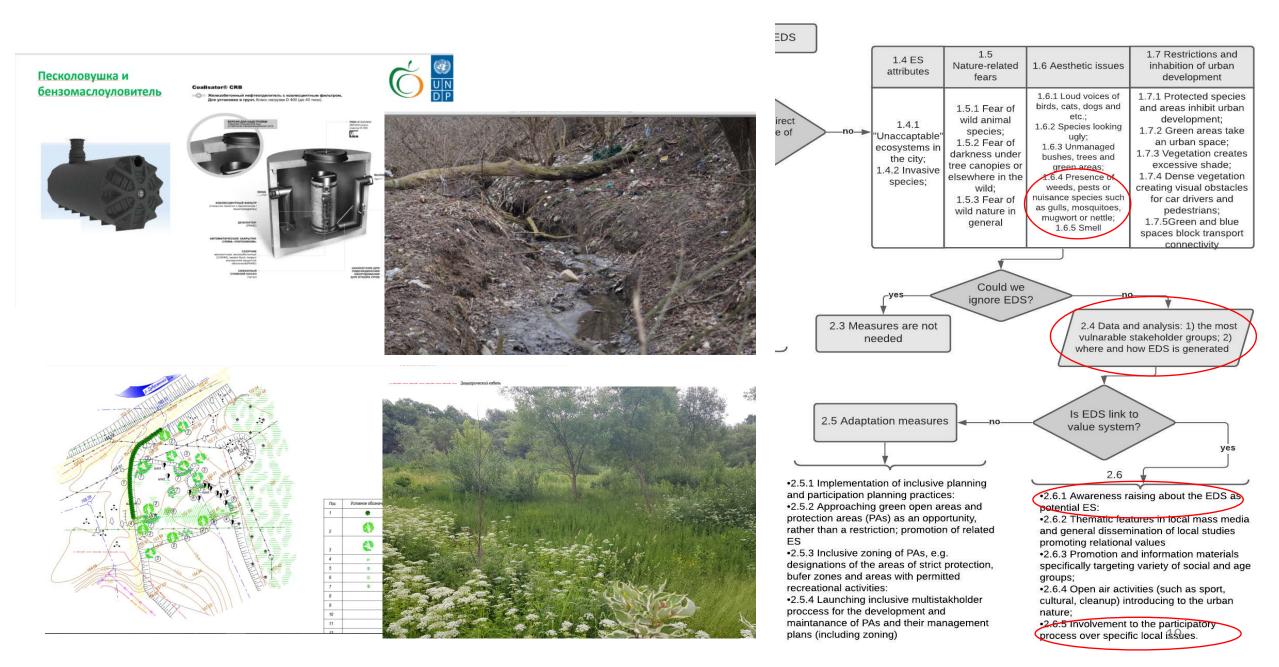
 2.8.3 Control of the water guality of city rivers and lakes; 2.8.4Establishing regulations, build standards, norms and etc.

recreational activities: •2.5.4 Launching inclusive multistakholder proccess for the development and maintanance of PAs and their management plans (including zoning)


 •2.6.4 Open air activities (such as sport, cultural, cleanup) introducing to the urban nature;

 2.6.5 Involvement to the participatory process over specific local issues.

The river of Dubrabenka and its valley stretch for over 10 km across most of Mahilioŭ with the valley reaching 600 m wide. $_{\rm 16}$


Situation 1: what opportunities for mindset transformation are worth considering, but were not so far

An option for a solution

Мишээл байгаль орчин / Michel Nature Park, Ulaanbaatar, MN

Situation 2: how citizens actively resist when communication was not convincing

Situation 3: what adaptation of mindsets took place, and what hopes it gives

Ecosystem disservices in literature

Ecosystem Di	sservices	Region		Approches/methods	References			UGS	Bolzano, Italy	Qualitative online	(Speak et al., 2022)		Bitten by	UGS	Singapore	Qualitative analysis	(Hwang &
(EDS) Sub group	Types	Ecosystem type	Town/City/Country	4						survey + participatory approach	2022)	Nature	snakes	UGS	Namibia	(Questionnaire) Oualitative analysis	Roscoe, 2017) (Luetkemeier et
Ecosystem	Invasive	Urban Green	Cape town, South	Remote Sensing and	(Potgieter et al.,	Bio- emission plants		UGS	Florence, Italy	Questionnaire + Remote Sensing and GIS Qualitative analysis	(related fears	wildlife conflict	003	rvamioia	Quantanve analysis	(Luetkemeier et al., 2023)
and its element		Space (UGS) Urban Wetland Urban	Africa Taiwan Srinagar, india	GIS Quantitative analysis Qualitative analysis	2019a) (Yam et al., 2015) (Sheergojri et al.,			UGS	Illinois, USA		Salbitano, 2021) (Belaire et al., 2015)			UGS	Barranquilla Metropolitan Area, Colombia	Remote sensing and GIS	(Juanita et al., 2019)
		Freshwater Lake	2 *	(Questionnaire/intervie w)	2022)		emissions by	UGS	Europe (Germany, Sweden and Russia), New	Qualitative analysis	(Ignatieva et al., 2020)			UGS	Tokyo, Japan	Qualitative analysis (Questionnaire/intervie	(Hosaka et al., 2017)
		UGS	Baden- Württemberg, Germany	Public participation GIS mapping	(Baumeister et al., 2022)				Zealand (Christchurch), USA (Syracuse, NY) and Australia (Perth)	Participatory Qualitative approach Statistical analysis				UGS	Bengaluru, India	w) Questionnaire + Statistical analysis	(Thapa et al., 2023)
		UGS	Cape Town, South Africa	Qualitative analysis	(Potgieter et al., 2019b; Vaz et al., 2017)	Risks related to human health								UGS (Park)	France Neuros Televo	Qualitative + Statistical analysis	(Campagne et al., 2018)
of UGBS	Risks of falling old trees and branches	UGS	Sao Paulo, Brazil	Statistical analysis	2017) (Manfra et al., 2022)				Maastricht (The Netherlands)		al., 2024)			UGS UGS	Nagoya, Tokyo Sweden	Remote Sensing and GIS Ouestionnaire +	(Azmy et al., 2016) (Eriksson et al.,
		UGS	PA, USA	Qualitative analysis	(Roman et al., 2021)			Urban Constructed Waters de	Beijing, China		(Shah et al., 2023)			UGS	Barranquilla	modelling Remote sensing and GIS	(Juanita et al.,
		UGS	New South Wales, Australia	Qualitative and Statistical analysis	(Tovar Tique et al., 2021)			Wetlands Blue-Green Space (BGS)	UK	Qualitative analysis (Ouestionaire)	(Wood et al., 2022)				Metropolitan Area, Colombia		2019)
		UGS (Park)	Bucharest, Romania	(Qualitative) Questionnaire + GIS	(Stoia et al., 2022)			UGS	Comwall, UK	Qualitative approach (interviews/questionnair e)	(Willis et al., 2018) (Cwik et al., 2021) (Tovar Tique et al., 2021) (Baumeister et al., 2022) (Baumeister et al., 2023) (Baumeister et al., 2023)		Presence of insects/pests	UGS (Park)	Bucharest, Romania	Questionnaire + GIS	(Stoia et al., 2022)
		UGS	Bologna, Italy Utenha Central	Statistical analysis	(Caggiu et al., 2023)				_					UGS	Can Tho, Vietnam	Statistical analysis	(Toledo-Gallegos et al., 2022)
		UGS	Viterbo, Central Italy	Statistical analysis	(Masini et al., 2023)			BGS	Rzeszów, Poland	Qualitative analysis				UGS	Yokohama, japan	Questionnaire + Statistical analysis	(Køyata et al., 2021)
		UGS	Bolzano, Italy	Qualitative online survey + participatory approach	(Speak et al., 2022)			UGS	New South Wales, Australia	Qualitative and Statistical Analysis		cultural,	Presence of mosquitoes		Sydney, Australia	Remote Sensing and GIS	(Hanford et al., 2019)
		UGS	Yokohama, Japan	Questionnaire + Statistical analysis	(Koyata et al., 2021)				Baden- Württemberg, Germany	Public participation GIS mapping		ohter values and beliefs		Urban Constructed Wetlands	Beijing, China	Statistical analysis	(Shah et al., 2023)
	Cracking pavements	UGS	Sao Paulo, Brazil	Statistical analysis	(Manfra et al., 2022)			UGS	Naples, Italy	Remote Sensing and GIS	(Prigioniero et al., 2022)	1	UGS	Singapore	Qualitative survey + Statistical analysis	(Drillet et al., 2020)	
	and foundations due to wandering tree roots	UGS UGS	Johannesburg Rio de Janeiro,	Remote Sensing and GIS Qualitative and	(Jombo et al., 2020) (Piston et al.,			UGS UGS	Johannesburg Cape Town Barranouilla	Sampling method Remote sensing and GIS	(Ghařbi et al., 2023) (Juanita et al., 2019)		Loud noise	UGS	Barranquilla Metropolitan Area,	Remote sensing and GIS	· ·
		UGS	Brazil Viterbo, Central	Statistical analysis Statistical analysis	2022) (Masini et al.,				Metropolitan Area, Colombia	avenuore sensing unit G15				UGS	Colombia Bursa City, Turkey	Statistical analysis	(Yildirim et al., 2022)
	Nuisances from litter	UGS	Italy Malmo, Sweden	Qualitative analysis	2023) (Roman et al., 2021)			UGS	Berlin, Germany	Remote Sensing and GIS	(von Döhren & Haase, 2022)	Haase, 2022} (Campagne et al., 2018)		UGS	Illinois, USA	Qualitative analysis	(Belaire et al., 2015)
		UGS	New South Wales, Australia	Qualitative and Statistical analysis	(Tovar Tique et al., 2021)			UGS (Park) UGS	France Hong Kong	Qualitative + Statistical analysis Qualitative	2018)		Unattractive view/unpleas ant/dirty	UGS	Maastricht (The Netherlands)	Spatial modelling	(Oosterbroek et al., 2023)
		UGS	Yokohama, japan	Questionnaire + Statistical analysis	(Koyata et al., 2021)			005	Hong Kong	(Questionnaire) + Statistical analysis	(Hui & Jim, 2022)			UGS (Lawns)	Europe New Zealand	Qualitative analysis	(Ignatieva et al., 2020)
	Staining of car caused by falling fruits	UGS (Park)	Bucharest, Romania	Questionnaire + GIS	(Stoia et al., 2022)		Dangerous diseases caused by ticks	UGS	Finland	Remote sensing and GIS	(Ala-Hulkko et al., 2019)				Centand (Christchurch), USA (Syracuse, NY) and Australia (Perth)		2020)
	Infrastructur e damage	UGS	Beijing, China	Statistical analysis	(Wu et al., 2021)			UGS	Maastricht (The Netherlands)	Spatial modelling	(Oosterbroek et al., 2023)			UGS	(Perdi) Rio de Janeiro, Brazil	Qualitative and Statistical analysis	(Pistón et al., 2022)

Ζ⊥

The concept of EDS is fully operational as a planning instrument

Concluding

remarks

Our decision making tree can be used as a tool supporting the inclusive planning process or, just ensuring the level of acceptance that would let the project move forward

EDS indeed need to be considered in their specific socio-cultural context, and accounting for their biophysical nature and time scales

The promotion of urban nature is, in most cases, is a problematic affair, and to achieve stakeholder acceptance it requires timely deliberation based on the understanding of their perspectives, and at a pace that is acceptable to them

The most challenging step is understanding why and by whom exactly (including the route causes) urban nature is perceived as EDS

We have recognized the issues : (1) the emergence of unexpected stakeholders that obscure inclusiveness and transparency principle of communicative planning; (2) the hidden connections that deliberately exclude the planning and design team; and (3) value conflicts that distorted the effectiveness of communicative actions

Cinghiali di Perugia: what realistic and proportional measures you could come up with? If you find it useful, please deploy the decision-making tree. Please make sure that the measures are realistic and proportional, and that multiple governance levels are accounted for

Other wildlife conflicts in cities: beavers, bats, monkeys etc. Please come up with a specific case and realistic solutions. Deploy the classification tree and the EDS classification where neccessery

Large trees on city streets: "tree rights" vs. comfortable urban living. Pick up a specific location and develop realistic solutions

A case study of your liking: any EDS case is good as long as it is relevant and well supported by evidence

Timeline:

Group Work

- Case study proposals and groups 20 min
- Work on solutions; independent work and consultations 40 min
- Pitches 20 min

BetterLife Spring School, April 9-10, 2024

Urban Ecosystem Disservices

for engaging communities to the discussion over the management of urban nature

Anton Shkaruba, Estonian University of Life Sciences, Tartu, Estonia anton.shkaruba@emu.ee

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Research Executive Agency (REA). Neither the European Union nor the granting authority can be held responsible for them.

Funded by the European Unio